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Penalized Interior Point Methods Penalty Parameter

Penalized LP Problems

Bounded LP Problem
Min cTx
s.t. Ax = b

Ex + v = u
(x, v) ≥ 0

Sub-Problem with penalty parameter, ρ > 0

(Pρ) Min cTx +
ρ

2

(
‖b− Ax‖2 + ‖u− Ex− v‖2

)
s.t. (x, v) ≥ 0

Such that, x→ x∗, ρ→∞⇒ ρ(‖b− Ax‖2 + ‖u− Ex− v‖2)→ ?.
The objective function with logarithmic barrier parameter µ ≥ 0, is

P(x, v) = cTx +
ρ

2

(
‖b− Ax‖2 + ‖u− Ex− v‖2

)
− µ

 n∑
j=1

log xj +
∑
j∈C

log vj
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Penalized Interior Point Methods KKT conditions

Karush–Kuhn–Tucker conditions

Perturbed KKT system for δ = 1/ρ

Ax + δy = b
Ex + v− δw = u

ATy + z− ETw = c (1)
XZe = µe

VWe = µe

Newton system

Adx + δdy = rp,
Edx + dv− δdw = ru,

ATdy + dz− ETdw = rd,
Zdx + Xdz = rs,

Wdv + Vdw = rr,

rp = b− Ax− δy
ru = u− Ex− v + δw
rd = c− ATy− z + ETw
rs = −XZe + µe
rr = −VWe + µe

(2)
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Penalized Interior Point Methods Search directions

Search directions

dz = X−1(rs − Zdx), dw = V−1(rr −Wdv)

S = V + δW, dv = S−1V(ru − Edx) + δS−1rr

Augmented System: D = (X−1Z + ETS−1WE)−1

r1 = rd − X−1rs + ETS−1rr − ETS−1Wru(
−D−1 AT

A δI

)(
dx
dy

)
=

(
r1
rp

)
(3)

Normal Equations

(ADAT + δI)dy = rp + ADr1 (4)
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(
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(ADAT + δI

Improved ill-conditioning of ADAT

)dy

Cholesky’s method, or

Cojugate Gradient Methods

= rp + ADr1 (4)
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Preconditioners (new approach) Splitting Preconditioner

Splitting Preconditioner

Given a base of columns B of the matrix A, we split A = [B,N],
D = diag(DB,DN). A class of splitting preconditioner suggested
by Oliveira and Sorensen [14] for augmented system is

M−1 =

D
1
2
B 0 D

− 1
2

B B−1

0 D
1
2
N 0

D
1
2
B 0 0

 (5)

Desirable property

D
− 1

2
B B−1(ADAT + δI)B−TD

− 1
2

B = I + δW0WT
0 + WWT ≈ I

si W = D
− 1

2
B B−1ND

1
2
N ≈ 0, where W0 = D

− 1
2

B B−1.
In order to not calculate the ADAT product we can apply
preconditioned conjugate gradients method.
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Preconditioners (new approach) New approach for finding a Base

Rectangular Factorization
LUstd

D
1
2 AT = Ba

se

L1

U1

PD
1
2 ATQ = LU

Fill-in: The columns of D
1
2 AT

is pre-ordered by AMD
LU rectangular multifrontal
factorization is applied with
threshold σ = 0.1.
Vector base: B = p(1 : m),
where p is the permutation
vector of P.

LUret

AP0 =

Base

L1

U1

PAP0Q = LU

P0 : Pre-orderer Matrix

The columns of A is pre-ordered
by norm-2 of AD

1
2 and LI criteria

LU rectangular factorization is
applied to pre-ordered A.
Restart if filling.

Vector Base B = q(1 : m), where q
is the permutation vector of Q.
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Preconditioners (new approach) Hybrid Approach

Hybrid Approach

Phase I: P : Controlled Cholesky Factorization

P−1(ADAT + δI)P−TPTdy = P−1r. (6)

Phase II: Solve the preconditioned augmented system with
splitting preconditioner M−1, is equivalent to solve the
preconditioned Normal Equations with preconditioner

P−1 = D
− 1

2
B B−1.

D
− 1

2
B B−1(ADAT + δI)B−TD

− 1
2

B dỹ = D
− 1

2
B B−1 (rp + ADr1

)
(7)

then, dy = B−TD
− 1

2
B dỹ, and dx = D(ATdy− r1).
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Numerical experiments Experiment with the new PCx

NETLIB, QAP, Kennington and KBAPAH Problems

Total of Linear Programming problems considered: 189
Medium Problems Large Problems

BL fit1p pds-30 ken18
BL2 fit2p pilot87 kra30a2

chr22b GE qap12 kra30b2

chr25a greenbeb qap15 nug07-3rd
CO5 ken13 rou20 nug202

CO9 NL scr20 pds-70
CQ9 nug06-3rd stocfor3 pds-80
cre-b nug12 pds-90
cre-d nug15 pds-100
dfl001 osa-60 ste36a2

els19 pds-10 ste36b2

ex09 pds-20 ste36c2

2It may require a huge amount of computational memory
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Numerical experiments Experiment with the new PCx

CG Iterations in Phase II of LUstd and LUret

The more bad-conditioned is the coefficient matrix, the number of
iterations of conjugate gradient method will be more higher.

20 25 30 35 40 45 50
0

2

4

6

8

×104

Medium and large problems

C
G

It
er

s.
Ph

as
e

II LUstd
LUret

Figure 1: Conjugate Gradient Iterations in Phase II of LUstd and LUret
Average LUstd = 5961.61, Average LUret = 7435.37.
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Numerical experiments Experiment with the new PCx

LU Factorization time % of LUstd and LUret

The more bad-conditioned is the coefficient matrix, the time % of
LU factorization will be more higher.

20 25 30 35 40 45 50

0

20

40

60

80

Medium and large problems

Ti
m

e
%

LU
Fa

ct
. LUstd

LUret

Figure 2: Time % LU Fact. of LUstd and LUret
Average LUstd = 7.2%, Average LUret = 10.5%

///Porfirio Suñagua S./// (CMAT) IPM in LP WorkShop 21 / 38



Numerical experiments Performance of PCx with LUstd

Content:

1 Penalized Interior Point Methods
Penalty Parameter
KKT conditions
Search directions

2 Preconditioners (new approach)
Splitting Preconditioner
New approach for finding a Base
Hybrid Approach

3 Numerical experiments
Experiment with the new PCx
Performance of PCx with LUstd
Performance Profile

4 Theoretical results
5 Conclusions

Better Condition number
Performance profile

///Porfirio Suñagua S./// (CMAT) IPM in LP WorkShop 22 / 38



Numerical experiments Performance of PCx with LUstd

Performance of PCx with LUstd

To compare the modified PCx performance with the new approach, we
consider the four variants below

Four approach
1 Lustd with penalization parameter (the new approach).
2 Lustd without penalization parameter.
3 LUret with penalization parameter.
4 Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build
the performance profile suggested by Dolan and Moré.
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Numerical experiments Performance of PCx with LUstd

Processing time

Problem LUret LUret+Pen LUstd-Pen LUstd+Pen
pds-70 1350.78 1440.13 1460.42 1431.93
ken18 1181.18 1196.53 1573.41 1438.93
pds-80 1705.75 1860.69 1744.39 1872.91
pds-90 2140.66 2106.1 2143.03 2126.16
pds-100 2896.42 3099.77 3088.34 3153.13
kra30a 6693.08 6698.49
ste36a 14072.58 14563.07 7298.44 6911.57
ste36b 9497.97 8305.62
kra30b 6537.62 9326.45
ste36c 11286.5 9986.89
nug20 12245.43 10651.28
Remaining 2191.73 6060.74 3693.04 3591.50
Total 25539.1 30327.03 67261.67 65494.86
In Common 25473.5 26249.59 19119.04 18726.05

Table 1: Processing time in seconds
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Numerical experiments Performance of PCx with LUstd

Summary of times of processing

LUret LUret+Pen LUstd-Pen LUstd+Pen
Problems 189 189 189 189
Solved 121 119 149 163

64.02% 62.96% 78.84% 86.24%
Unsolved 683 703 40 26

35.98% 37.04% 21.16% 13.76%
Total (seg) 25539.1 30327.03 67261.67 65494.86
109 Prob. 25473.5 26249.59 19119.04 18726.05
121 Prob. 25539.1 18793.51

319 problems ended with some processing errors

Table 2: Summary of times of processing
Difference: 25539.1− 18793.51 = 6745.59 ≈ 1h52m.
LUstd is more efficient than LUret
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Numerical experiments Performance Profile

Performance Profile of LUstd y LUret
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Theoretical results

Mixed barrier-penalty algorithm

(NLP) min f (x) (8)
s.t. x ∈ Ω1, x ∈ Ω2, x ∈ Ω3.

(BPρ,µ) min f (x) + ρP(x) + µB(x) (9)
s.t. x ∈ Int(Ω2), x ∈ Ω3.

Algorithm
Given x0 ∈ Rn, ρ0 > 0, µ0 > 0, and k = 0

1 Test the optimality of xk for (8) and stop if satisfied
2 Compute x(ρk, µk) as global minimizer of (9)
3 Take xk+1 = x(ρk, µk), ρk+1 > ρk, 0 < µk+1 < µk, k = k + 1 and

return to step 1.
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Theoretical results

Convergence Theorem

Global convergence for mixed method

Let {xk} be a sequence of global minimizers of the mixed penalized
problem generated by above mixed Algorithm in which ρk → +∞ and
µk → 0. Then any limit point of sequence is a global minimizer of the
(NLP) problem.

10
20

1
2

4

6

Figure 3: θ(ρ, µ), 0 < µ < 2.5, 0 < ρ < 20
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Conclusions Better Condition number

Better Condition number

1 Number of iterations of the conjugated gradients method in
second phase: for 51 problems in common

Average LUstd = 5961.61, Average LUret = 7435.37. ↓ 19.81%
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Conclusions Performance profile

Efficiency and robustness

1 The more efficient and robust method is one that quickly reaches one
higher probability.

LUstd : Prob(τ ≤ 2) = 0.86, LUret : Prob(τ ≤ 5.5) = 0.64

0 0.5 1 1.5 2 2.5 3

×104

LUret
LUstd

25539.1
18793.51

Problems in common time (↓ 19.81%)

Thus, LUstd is more efficient and more robust than LUret.
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