A New Approach for Finding a Base for the Splitting Preconditioner for Linear Systems from Interior Point Methods

Porfirio Suñagua S. Linear Programming

Department of Mathematics FCPN-UMSA

Campinas, April 27-28, 2015

//Porfirio Suñagua S.// (CMAT)

IPM in LP

Content

- Penalized Interior Point Methods Penalty Parameter KKT conditions Search directions
- Preconditioners (new approach) Splitting Preconditioner New approach for finding a Base Hybrid Approach

- B Numerical experiments
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- 6 Conclusions
 - Better Condition number Performance profile

Content

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- 8 Numerical experiments
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

Conclusions

Better Condition number

Content

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

Theoretical results

6 Conclusions

Content

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

Theoretical results

Conclusions

Content

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach O Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

Penalized Interior Point Methods Penalty Parameter

KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

Penalized LP Problems

Bounded LP Problem

$$\begin{array}{ll} \text{Min} & c^T x\\ \text{s.t.} & Ax = b\\ & Ex + v = u\\ & (x, v) \ge 0 \end{array}$$

• Sub-Problem with penalty parameter, $\rho > 0$

$$(P_{\rho}) \quad \text{Min} \quad c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right)$$

s.t. $(x, v) \ge 0$

$$\mathcal{P}(x,v) = c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right) \\ - \mu \left(\sum_{j=1}^{n} \log x_{j} + \sum_{j \in \mathcal{C}} \log v_{j} \right)$$

Penalty Parameter

Penalized LP Problems

- Bounded LP Problem Min $c^T x$ s.t. Ax = b Ex + v = u $(x, v) \ge 0$ • Sub-Problem with penalty parameter, $\rho > 0$
 - $(P_{\rho}) \quad \text{Min} \quad c^{T}x + \frac{\rho}{2} \left(\|b Ax\|^{2} + \|u Ex v\|^{2} \right)$ s.t. $(x, v) \ge 0$

Such that, $\mathbf{x} \to \mathbf{x}^*$, $\rho \to \infty \Rightarrow \rho(||b - Ax||^2 + ||u - Ex - v||^2) \to ?$. The objective function with logarithmic barrier parameter $\mu \ge 0$, is

$$\mathcal{P}(x,v) = c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right) \\ - \mu \left(\sum_{j=1}^{n} \log x_{j} + \sum_{j \in \mathcal{C}} \log v_{j} \right)$$

Penalty Parameter

Penalized LP Problems

- Min $c^T x$ Bounded LP Problem s.t. Ax = bEx + v = u(x, v) > 0• Sub-Problem with penalty parameter, $\rho > 0$
 - (P_{ρ}) Min $c^{T}x + \frac{\rho}{2} \left(\|b Ax\|^{2} + \|u Ex v\|^{2} \right)$ s.t. (x, v) > 0

Such that, $\mathbf{x} \to \mathbf{x}^*$, $\rho \to \infty \Rightarrow \rho(||b - Ax||^2 + ||u - Ex - v||^2) \to 0$.

$$\mathcal{P}(x,v) = c^T x + \frac{\rho}{2} \left(\|b - Ax\|^2 + \|u - Ex - v\|^2 \right)$$
$$- \mu \left(\sum_{j=1}^n \log x_j + \sum_{j \in \mathcal{C}} \log v_j \right)$$

500

Penalty Parameter

Penalized LP Problems

• Bounded LP Problem

$$\begin{array}{ll} \text{Min} & c^T x\\ \text{s.t.} & Ax = b\\ & Ex + v = u\\ & (x,v) \ge 0 \end{array}$$

• Sub-Problem with penalty parameter, $\rho > 0$

$$(P_{\rho}) \quad \text{Min} \quad c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right)$$

s.t. $(x, v) \ge 0$

Such that, $\mathbf{x} \to \mathbf{x}^*$, $\rho \to \infty \Rightarrow \rho(\|b - Ax\|^2 + \|u - Ex - v\|^2) \to 0$.

• The objective function with logarithmic barrier parameter $\mu \ge 0$, is

$$\mathcal{P}(x,v) = c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right) \\ - \mu \left(\sum_{j=1}^{n} \log x_{j} + \sum_{j \in \mathcal{C}} \log v_{j} \right)$$

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions

Search directions

Preconditioners (new approach) Splitting Preconditioner

New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

Karush-Kuhn-Tucker conditions

• Perturbed KKT system for $\delta = 1/\rho$

$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$A^{T}y + z - E^{T}w = c$$

$$XZe = \mu e$$

$$VWe = \mu e$$

(1)

• Newton system

$$\begin{aligned} Adx + \delta dy &= r_p, \quad r_p = b - Ax - \delta y \\ Edx + dv - \delta dw &= r_u, \quad r_u = u - Ex - v + \delta w \\ A^T dy + dz - E^T dw &= r_d, \quad r_d = c - A^T y - z + E^T w \\ Zdx + Xdz &= r_s, \quad r_s = -XZe + \mu e \\ Wdv + Vdw &= r_r, \quad r_r = -VWe + \mu e \end{aligned}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

200

Karush-Kuhn-Tucker conditions

• Perturbed KKT system for $\delta = 1/\rho$

$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$A^{T}y + z - E^{T}w = c$$

$$XZe = \mu e$$

$$VWe = \mu e$$

(1)

Newton system

$$Adx + \delta dy = r_p, \quad r_p = b - Ax - \delta y$$

$$Edx + dv - \delta dw = r_u, \quad r_u = u - Ex - v + \delta w$$

$$A^T dy + dz - E^T dw = r_d, \quad r_d = c - A^T y - z + E^T w$$

$$Zdx + Xdz = r_s, \quad r_s = -XZe + \mu e$$

$$Wdv + Vdw = r_r, \quad r_r = -VWe + \mu e$$
(2)

500

1 Penalized Interior Point Methods

Penalty Parameter KKT conditions

Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$ • Augmented System: $D = (X^{-1}Z + E^TS^{-1}WE)^{-1}$ $r_1 = r_2 - X^{-1}r_1 + E^TS^{-1}r_2 - E^TS^{-1}$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

• Normal Equations

 $(ADA^{T} + \delta I)dy = r_{p} + ADr_{1} \tag{4}$

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

Normal Equations

$$(ADA^{T} + \delta I)dy = r_{p} + ADr_{1}$$
(4)

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

Normal Equations

$$(ADA^{T} + \delta I)dy = r_{p} + ADr_{1} \tag{4}$$

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

Normal Equations

$$(ADA^{T} + \delta I)dy = r_{p} + ADr_{1}$$
(4)

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $\begin{aligned} \mathbf{D} &= (X^{-1}Z + E^T S^{-1} W E)^{-1} \\ r_1 &= r_d X^{-1} r_s + E^T S^{-1} r_r E^T S^{-1} W r_u \end{aligned}$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

• Normal Equations Improved ill-conditioning of ADA^T

$$(ADA^{T} + \delta I)dy = r_{p} + ADr_{1}$$
(4)

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(3)

• Normal Equations

Improved ill-conditioning of ADA^T

$$(ADA^{T} + \delta I)dy = r_{p} + ADr_{1}$$
(4)

イロト イポト イヨト イヨト

Cholesky's method, or Cojugate Gradient Methods

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

Preconditioning
$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
 (3)

Normal Equations

$$(ADAT + \delta I)dy = r_p + ADr_1$$
(4)
Preconditioning
Cojugate Gradient Methods
(Preconditioned)

- $dz = X^{-1}(r_s Zdx), \qquad dw = V^{-1}(r_r Wdv)$
- $S = V + \delta W$, $dv = S^{-1}V(r_u Edx) + \delta S^{-1}r_r$
- Augmented System: $D = (X^{-1}Z + E^T S^{-1}WE)^{-1}$ $r_1 = r_d - X^{-1}r_s + E^T S^{-1}r_r - E^T S^{-1}Wr_u$

Splitting
Preconditioner
$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
 (3)

Normal Equations

$$(ADAT + \delta I)dy = r_p + ADr_1$$
Controlled
Cholesky
Preconditioner(CCF)
Cojugate Gradient Methods
(Preconditioned)

Penalized Interior Point Methods Penalty Parameter

> KKT conditions Search directions

2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach 3 Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

- Penalized Interior Point Methods Penalty Parameter KKT conditions Search directions
- Preconditioners (new approach) Splitting Preconditioner

New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- 6 Conclusions
 - Better Condition number Performance profile

Splitting Preconditioner

• Given a base of columns *B* of the matrix *A*, we split A = [B, N], $D = \text{diag}(D_B, D_N)$. A class of splitting preconditioner suggested by Oliveira and Sorensen [14] for augmented system is

$$M^{-1} = \begin{pmatrix} D_B^{\frac{1}{2}} & 0 & D_B^{-\frac{1}{2}}B^{-1} \\ 0 & D_N^{\frac{1}{2}} & 0 \\ D_B^{\frac{1}{2}} & 0 & 0 \end{pmatrix}$$
(5)

Desirable property

 $D_B^{-\frac{1}{2}}B^{-1}(ADA^T + \delta I)B^{-T}D_B^{-\frac{1}{2}} = I + \delta W_0 W_0^T + WW^T \approx I$

si $W = D_B^{-\frac{1}{2}} B^{-1} N D_N^{\frac{1}{2}} \approx 0$, where $W_0 = D_B^{-\frac{1}{2}} B^{-1}$.

• In order to not calculate the *ADA^T* product we can apply preconditioned conjugate gradients method.

SQA

Splitting Preconditioner

• Given a base of columns *B* of the matrix *A*, we split A = [B, N], $D = \text{diag}(D_B, D_N)$. A class of splitting preconditioner suggested by Oliveira and Sorensen [14] for augmented system is

$$M^{-1} = \begin{pmatrix} D_B^{\frac{1}{2}} & 0 & D_B^{-\frac{1}{2}}B^{-1} \\ 0 & D_N^{\frac{1}{2}} & 0 \\ D_B^{\frac{1}{2}} & 0 & 0 \end{pmatrix}$$
(5)

Desirable property

$$D_B^{-\frac{1}{2}}B^{-1}(ADA^T + \delta I)B^{-T}D_B^{-\frac{1}{2}} = I + \delta W_0 W_0^T + WW^T \approx I$$

si $W = D_B^{-\frac{1}{2}}B^{-1}ND_N^{\frac{1}{2}} \approx 0$, where $W_0 = D_B^{-\frac{1}{2}}B^{-1}$.
In order to not calculate the ADA^T product we can apply
preconditioned conjugate gradients method.

Splitting Preconditioner

• Given a base of columns *B* of the matrix *A*, we split A = [B, N], $D = \text{diag}(D_B, D_N)$. A class of splitting preconditioner suggested by Oliveira and Sorensen [14] for augmented system is

$$M^{-1} = \begin{pmatrix} D_B^{\frac{1}{2}} & 0 & D_B^{-\frac{1}{2}}B^{-1} \\ 0 & D_N^{\frac{1}{2}} & 0 \\ D_B^{\frac{1}{2}} & 0 & 0 \end{pmatrix}$$
(5)

• Desirable property

$$D_B^{-\frac{1}{2}}B^{-1}(ADA^T + \delta I)B^{-T}D_B^{-\frac{1}{2}} = I + \delta W_0 W_0^T + WW^T \approx I$$

si
$$W = D_B^{-\frac{1}{2}} B^{-1} N D_N^{\frac{1}{2}} \approx 0$$
, where $W_0 = D_B^{-\frac{1}{2}} B^{-1}$.

• In order to not calculate the *ADA^T* product we can apply preconditioned conjugate gradients method.

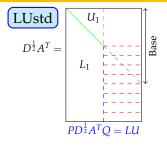
- Penalized Interior Point Methods Penalty Parameter KKT conditions Search directions
- 2 Preconditioners (new approach)

New approach for finding a Base Hybrid Approach

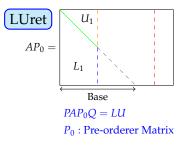
- 3 Numerical experiments
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- 6 Conclusions
 - Better Condition number Performance profile

Rectangular Factorization



- LU rectangular multifrontal
- Vector base: B = p(1 : m),

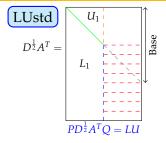


- The columns of *A* is pre-ordered by norm-2 of $AD^{\frac{1}{2}}$ and LI criteria
- *LU* rectangular factorization is applied to pre-ordered A. Restart if filling.
- Vector Base B = q(1 : m), where qis the permutation vector of Q. イロト イロト イヨト イヨト

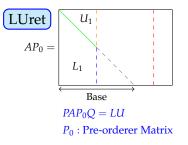
//Porfirio Suñagua S.// (CMAT)

500

Rectangular Factorization



- Fill-in: The columns of $D^{\frac{1}{2}}A^T$ is pre-ordered by AMD
- LU rectangular multifrontal factorization is applied with threshold $\sigma = 0.1$.
- Vector base: B = p(1:m), where *p* is the permutation vector of P.



- The columns of *A* is pre-ordered by norm-2 of $AD^{\frac{1}{2}}$ and LI criteria
- LU rectangular factorization is applied to pre-ordered A. Restart if filling.
- Vector Base B = q(1 : m), where qis the permutation vector of Q. イロト イロト イヨト イヨト

//Porfirio Suñagua S.// (CMAT)

500

- Penalized Interior Point Methods Penalty Parameter KKT conditions
- 2 Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- 8 Numerical experiments
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- 6 Conclusions
 - Better Condition number Performance profile

Hybrid Approach

• Phase I: P : Controlled Cholesky Factorization

$$P^{-1}(ADA^T + \delta I)P^{-T}P^T dy = P^{-1}r.$$

• Phase II: Solve the preconditioned augmented system with

$$\left[D_{B}^{-\frac{1}{2}}B^{-1}(ADA^{T}+\delta I)B^{-T}D_{B}^{-\frac{1}{2}}d\tilde{y}=D_{B}^{-\frac{1}{2}}B^{-1}\left(r_{p}+ADr_{1}\right)\right]$$
(7)

then,
$$dy = B^{-T}D_B^{-\frac{1}{2}}d\tilde{y}$$
, and $dx = D(A^Tdy - r_1)$.

200

(6)

Hybrid Approach

• Phase I: P : Controlled Cholesky Factorization

$$P^{-1}(ADA^T + \delta I)P^{-T}P^T dy = P^{-1}r.$$
(6)

• Phase II: Solve the preconditioned augmented system with splitting preconditioner M^{-1} , is equivalent to solve the preconditioned Normal Equations with preconditioner $P^{-1} = D_B^{-\frac{1}{2}}B^{-1}$.

$$\left(D_{B}^{-\frac{1}{2}}B^{-1}(ADA^{T}+\delta I)B^{-T}D_{B}^{-\frac{1}{2}}d\tilde{y}=D_{B}^{-\frac{1}{2}}B^{-1}\left(r_{p}+ADr_{1}\right)\right)$$
(7)

then,
$$dy = B^{-T}D_B^{-\frac{1}{2}}d\tilde{y}$$
, and $dx = D(A^Tdy - r_1)$.

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach 3 Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

- 4 Theoretical results
- 6 Conclusions

Content:

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- Numerical experiments
 Experiment with the new PCx
 - Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- **6** Conclusions
 - Better Condition number Performance profile

NETLIB, QAP, Kennington and KBAPAH Problems

Total of Linear Programming problems considered: 189

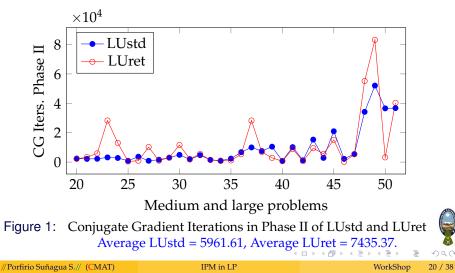
Medium Problems			Large Problems
BL	fit1p	pds-30	ken18
BL2	fit2p	pilot87	kra30a ²
chr22b	GE	qap12	kra30b ²
chr25a	greenbeb	qap15	nug07-3rd
CO5	ken13	rou20	nug20 ²
CO9	NL	scr20	pds-70
CQ9	nug06-3rd	stocfor3	pds-80
cre-b	nug12		pds-90
cre-d	nug15		pds-100
dfl001	osa-60		ste36a ²
els19	pds-10		ste36b ²
ex09	pds-20		ste36c ²

²It may require a huge amount of computational memory

200

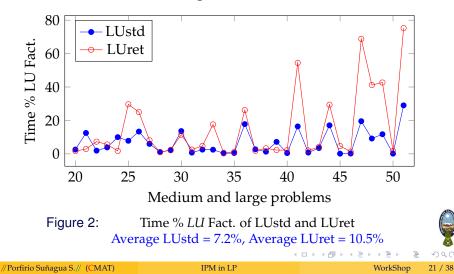
CG Iterations in Phase II of LUstd and LUret

The more bad-conditioned is the coefficient matrix, the number of iterations of conjugate gradient method will be more higher.



LU Factorization time % of LUstd and LUret

The more bad-conditioned is the coefficient matrix, the time % of *LU* factorization will be more higher.



Content:

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach S Numerical experiments

 Experiment with the new PCx
 Performance of *PCx* with LUstd
 Performance Profile

 Theoretical results
 Conclusions

 Better Condition number

Performance profile

To compare the modified *PCx* performance with the new approach, we consider the four variants below

Four approach

- Lustd with penalization parameter (the new approach).
- ② Lustd without penalization parameter.
- Uret with penalization parameter.
- Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build the **performance profile** suggested by Dolan and Moré.

To compare the modified *PCx* performance with the new approach, we consider the four variants below

Four approach

Lustd with penalization parameter (the new approach).

- 2 Lustd without penalization parameter.
- O LUret with penalization parameter.
- Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build the **performance profile** suggested by Dolan and Moré.

To compare the modified *PCx* performance with the new approach, we consider the four variants below

Four approach

- Lustd with penalization parameter (the new approach).
- 2 Lustd without penalization parameter.
- IUret with penalization parameter.
- Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build the **performance profile** suggested by Dolan and Moré.

To compare the modified *PCx* performance with the new approach, we consider the four variants below

Four approach

- Lustd with penalization parameter (the new approach).
- 2 Lustd without penalization parameter.
- Uret with penalization parameter.

Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build the **performance profile** suggested by Dolan and Moré.

To compare the modified *PCx* performance with the new approach, we consider the four variants below

Four approach

- Lustd with penalization parameter (the new approach).
- 2 Lustd without penalization parameter.
- Uret with penalization parameter.
- Original LUret of Oliveira and Sorensen [14].

Once calculated processing times for the four approaches, will build the performance profile suggested by Dolan and Moré.

Processing time

Problem	LUret	LUret+Pen	LUstd-Pen	LUstd+Pen
pds-70	1350.78	1440.13	1460.42	1431.93
ken18	1181.18	1196.53	1573.41	1438.93
pds-80	1705.75	1860.69	1744.39	1872.91
pds-90	2140.66	2106.1	2143.03	2126.16
pds-100	2896.42	3099.77	3088.34	3153.13
kra30a			6693.08	6698.49
ste36a	14072.58	14563.07	7298.44	6911.57
ste36b			9497.97	8305.62
kra30b			6537.62	9326.45
ste36c			11286.5	9986.89
nug20			12245.43	10651.28
Remaining	2191.73	6060.74	3693.04	3591.50
Total	25539.1	30327.03	67261.67	65494.86
In Common	25473.5	26249.59	19119.04	18726.05

Table 1: Processing time in seconds

590

Summary of times of processing

	LUret	LUret+Pen	LUstd-Pen	LUstd+Pen
Problems	189	189	189	189
Solved	121	119	149	163
	64.02%	62.96%	78.84%	86.24%
Unsolved	68^{3}	70^{3}	40	26
	35.98%	37.04%	21.16%	13.76%
Total (seg)	25539.1	30327.03	67261.67	65494.86
109 Prob.	25473.5	26249.59	19119.04	18726.05
121 Prob.	25539.1			18793.51

³19 problems ended with some processing errors

Table 2: Summary of times of processing
Difference: $25539.1 - 18793.51 = 6745.59 \approx 1h52m$.
LUstd is more efficient than LUret

Content:

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach 3 Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd

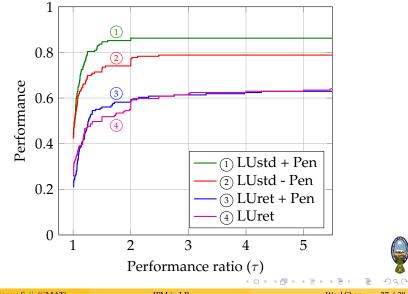
イロト イロト イヨト イヨト

Performance Profile

- 4 Theoretical results
- 6 Conclusions

Better Condition number Performance profile

Performance Profile of LUstd y LUret



Content

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- **3** Numerical experiments
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

4 Theoretical results

6 Conclusions

Better Condition number Performance profile

$$(NLP) \quad \min f(x) \tag{8}$$
$$s.t. \ x \in \Omega_1, x \in \Omega_2, x \in \Omega_3.$$
$$(BP_{\rho,\mu}) \quad \min f(x) + \rho \mathcal{P}(x) + \mu B(x) \tag{9}$$
$$s.t. \ x \in \operatorname{Int}(\Omega_2), x \in \Omega_3.$$

Algorithm

Given $x_0 \in \mathbb{R}^n$, $\rho_0 > 0$, $\mu_0 > 0$, and k = 0

- **①** Test the optimality of x_k for (8) and stop if satisfied
- Compute $x(\rho_k, \mu_k)$ as global minimizer of (9)
- Take $x_{k+1} = x(\rho_k, \mu_k)$, $\rho_{k+1} > \rho_k$, $0 < \mu_{k+1} < \mu_k$, k = k + 1 and return to step 1.

$$(NLP) \quad \min f(x) \tag{8}$$
$$s.t. \ x \in \Omega_1, x \in \Omega_2, x \in \Omega_3.$$
$$(BP_{\rho,\mu}) \quad \min f(x) + \rho \mathcal{P}(x) + \mu B(x) \tag{9}$$
$$s.t. \ x \in \operatorname{Int}(\Omega_2), x \in \Omega_3.$$

Algorithm

Given $x_0 \in \mathbb{R}^n$, $\rho_0 > 0$, $\mu_0 > 0$, and k = 0

- Test the optimality of x_k for (8) and stop if satisfied
- 2 Compute $x(\rho_k, \mu_k)$ as global minimizer of (9)
- 3 Take $x_{k+1} = x(\rho_k, \mu_k)$, $\rho_{k+1} > \rho_k$, $0 < \mu_{k+1} < \mu_k$, k = k + 1 and return to step 1.

$$(NLP) \quad \min f(x) \tag{8}$$
$$s.t. \ x \in \Omega_1, x \in \Omega_2, x \in \Omega_3.$$
$$(BP_{\rho,\mu}) \quad \min f(x) + \rho \mathcal{P}(x) + \mu B(x) \tag{9}$$
$$s.t. \ x \in \operatorname{Int}(\Omega_2), x \in \Omega_3.$$

Algorithm

Given $x_0 \in \mathbb{R}^n$, $\rho_0 > 0$, $\mu_0 > 0$, and k = 0

- Test the optimality of x_k for (8) and stop if satisfied
- Compute $x(\rho_k, \mu_k)$ as global minimizer of (9)
- 3 Take $x_{k+1} = x(\rho_k, \mu_k)$, $\rho_{k+1} > \rho_k$, $0 < \mu_{k+1} < \mu_k$, k = k + 1 and return to step 1.

$$(NLP) \quad \min f(x) \tag{8}$$
$$s.t. \ x \in \Omega_1, x \in \Omega_2, x \in \Omega_3.$$
$$(BP_{\rho,\mu}) \quad \min f(x) + \rho \mathcal{P}(x) + \mu B(x) \tag{9}$$
$$s.t. \ x \in \operatorname{Int}(\Omega_2), x \in \Omega_3.$$

Algorithm

Given $x_0 \in \mathbb{R}^n$, $\rho_0 > 0$, $\mu_0 > 0$, and k = 0

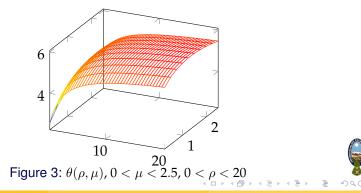
- Test the optimality of x_k for (8) and stop if satisfied
- Compute $x(\rho_k, \mu_k)$ as global minimizer of (9)

So Take $x_{k+1} = x(\rho_k, \mu_k)$, $\rho_{k+1} > \rho_k$, $0 < \mu_{k+1} < \mu_k$, k = k + 1 and return to step 1.

Convergence Theorem

Global convergence for mixed method

Let {*x*_{*k*}} be a sequence of global minimizers of the mixed penalized problem generated by above mixed Algorithm in which $\rho_k \rightarrow +\infty$ and $\mu_k \rightarrow 0$. Then any limit point of sequence is a global minimizer of the (*NLP*) problem.



Conclusions

Content

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach B Numerical experiments

Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

Theoretical results

5 Conclusions

Better Condition number Performance profile

Content:

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

イロト イロト イヨト イヨト

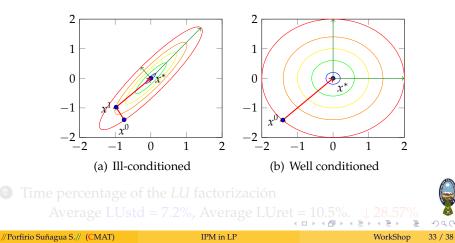
- 4 Theoretical results
- 5 Conclusions

Better Condition number

Performance profile

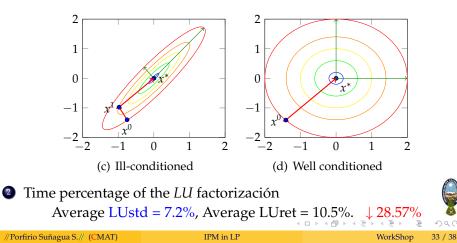
Better Condition number

 Number of iterations of the conjugated gradients method in second phase: for 51 problems in common
 Average LUstd = 5961.61, Average LUret = 7435.37. ↓ 19.81%



Better Condition number

Number of iterations of the conjugated gradients method in second phase: for 51 problems in common Average LUstd = 5961.61, Average LUret = 7435.37. 19.81%



500

Content:

Penalized Interior Point Methods

Penalty Parameter KKT conditions Search directions

Preconditioners (new approach)

Splitting Preconditioner New approach for finding a Base Hybrid Approach

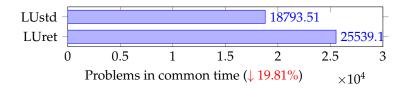
- Output State St
 - Experiment with the new PCx Performance of *PCx* with LUstd Performance Profile

- 4 Theoretical results
- **5** Conclusions
 - Better Condition number
 - Performance profile

Efficiency and robustness

The more efficient and robust method is one that quickly reaches one higher probability.

LUstd : $Prob(\tau \le 2) = 0.86$, *LUret* : $Prob(\tau \le 5.5) = 0.64$



Thus, LUstd is more efficient and more robust than LUret.

Image: A matrix

Bibliography

Bibliography I

- G. Al-Jeiroudi, J. Gondzio e J. Hall, Precontioning Indefite System in Interior Point Methods for Large Scale Linear Optimization, Optimization Methods and Software, 2008, volume 23 págs. 345–363.

Patrick R. Amestoy e Chiara Puglisi, An unsymmetrized multifrontal LU factorization, SIAM Journal on Matrix Analysis and Applications, 2002, volume 24, numero 2, pág. 553–569.

L. Bergamaschi, J. Gondzio e G. Zilli, Precontioning Indefite System in Interior Point Methods for Optimization, Computational Optimization and Application, 2004, volume 28 págs. 149–171, kluwer Academic Publishers – Netherlands.

Luca Bergamaschi, Jacek Gondzio e Giovanni Zilli, Preconditioning indefinite systems in interior point methods for optimization, Computational Optimization and Applications, 2004, volume 28, n^o 2 págs. 149–171.

J. Chai e K. Toh, Preconditioning and Iterative Solution of Symmetric Indefinite Linear System Arising from Interior Point Methods for Linear Programming, Computational Optimization and Applications, 2007, volume 36 págs. 221–247.

Joseph Czyzyk, Sanjay Mehrotra, Michael Wagner e Stephen J Wright, PCx user guide (Version 1.1), Optimization Technology Center, Northwestern University, 1997.

Timothy A. Davis e Iain S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM Journal on Matrix Analysis and Applications, 1997, volume 18, n^{O} 1 págs. 140–158.

200

ヘロト ヘロト ヘビト ヘビト

Bibliography

Bibliography II

David G. Luenberger, Linear and Nonlinear Programming, 2ª ed., Springer, Stanford University USA, 2005.

Carl Meyer, Matrix analysis and applied linear algebra book and solutions manual, volume 2, Society for Industrial and Applied Mathematics, 2000.

Ašić, Miroslav D and Kovačević-Vujčić, Vera V, Ill-conditionedness and interior-point methods, Publikacija Elektrotehničkog fakulteta-serija: matematika, 2000, No. 11, pp. 53–58.

A. R. L. Oliveira e D. C. Sorensen, A New Class of Preconditioners for Large-Scale Linear Systems from Interior Point Methods for Linear Programming, Linear Álgebra and its Applications, 2005, volume 394 págs. 1–24, England http://www.ime.unicamp.br/~aurelio/artigos/split.pdf.

J.A. Tomlin e M. Sauders, Solving regularized linear Programs using barrier method and KKT system., Rel. Téc. SOL 96-4, Standfor University, Standfor CA 94305, 1996, USA.

Velazco, MI and Oliveira, Aurelio RL and Campos, FF, A note on hybrid preconditioners for large-scale normal equations arising from interior-point methods, Journal Optimization Methods & Software, volume 25, nº2, págs 321–332, 2010, Taylor & Francis.

Y. Zhang e R.A. Tapia, Superlinear and Quadratic Convergence of Primal-Dual Interior-Point Methods for Linear Programming Revisited, Journal of Optimization Theory and Applications, 1992, volume 73, n^{0} 2 págs. 229–242.

Acknowledgement

Acknowledgement

For your Attention Porfirio Suñagua Salgado

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶